Particle Creation and Decay

Background

Subatomic particles are created naturally with sufficient energy, but many more types of particles are manufactured in high-energy particle physics experiments such as CERN. Most of the particles live for a fraction of a second, decaying to become other particles that are more common in the universe.

Examples of particles that are created in nature are an electron and positron, appearing in space after the absorption of a gamma ray in a process known as pair production. Or larger neutrinos called the muon neutrino and tau neutrino in a process known as neutrino oscillation.  An example of decay, that occurs in nature, is a free neutron.  It will decay to be a proton, an electron and an antineutrino in a process known as beta minus decay.

The complex behavior of particle creation and decay is captured in Feynman diagrams, such as the one below that illustrates an electron (e) and positron (e+) annihilating and the production of a gamma ray (γ).

feynman diagram electron and positron

 


 

Explanation

Particles can be described as a combination of wave centers, creating the appearance of a larger sphere of granule motion and standing wave energy when arranged in specific geometries that allow stability.  When a single wave center is present, it forms the neutrino.  When two or more wave centers are placed within proximity, a new particle is created.  When the geometry of multiple wave centers does not allow for stable, standing waves to be created, it will decay into smaller particles.

 

Particle Creation

The process of creating larger particles with greater energy is a result of constructive wave interference.  In a similar but opposite process the annihilation of a particle and its antiparticle is a result of destructive wave interference.  From the spacetime geometry page, the geometry of a particle is illustrated again with a wave center (black).  This time, a wave center on the opposite node is also pictured, separated a half-wavelength, colored in red. The color red is used on this page to signify a wave center on the opposite node, creating an antiparticle.spherical particle and antiparticle

Fundamental particle and antiparticle formation of standing waves (2D cross section view)

Using this description of constructive wave interference, a cross section of particle formation is now illustrated.  Particles are 3D objects, but the cross-section is shown to visualize the wave centers in the core of the particle.  On the left of the next figure, three wave centers (three neutrinos) are illustrated in motion with sufficient energy to combine at the core of a new particle.  On the right of the figure, a single particle is illustrated as the combination of three wave centers, now with constructive wave interference from all wave centers, increasing the displacement of granules (wave amplitude).

Before and after of particle creation

Particle formation from two or more wave centers and constructive wave interference

 

Particle Stability

The next figure illustrates the stability of particles.  Wave centers must be located at the nodes of standing waves for a simple reason.  No displacement occurs at a standing wave node.  For a wave center to be truly the center of spherical standing waves, it must not be displaced, and instead reflects the energy of incoming granules as their timing coincides exactly at the center.  If the wave center is not on a standing wave node, then a difference in energy on a given side will cause its motion.  The figure describes a particle with one wave center at the standing wave node (before).  Because the wave center to its right is not at a full wavelength distance, it is unstable and will move.  After it moves to the standing wave node at a wavelength distance, it is stable.

Note: Only wave centers are shown at this point and the remainder of this page. Granules are assumed but not shown.

particle stability

Particle stability depends on a geometry where wave centers are at standing wave nodes

Because standing wave nodes occur at wavelengths, a three-dimensional geometry that satisfies the condition is the simplest platonic solid – the tetrahedron. In the next figures, the tetrahedron and the dual tetrahedron are used extensively. Due to the challenges of illustrating a dual tetrahedron in 2D view, it is shown as two stacked tetrahedrons. An example of a dual tetrahedron can be found here.

 

Natural Creation of Particles

At low energies, wave centers may combine to form new particles.  This occurs in nature today in a process known as oscillation, where neutrinos oscillate to become larger neutrinos.  The following describes how a wave center – a single neutrino – may collide to form a larger particle. neutrino collisions

Natural collision of neutrino and antineutrino particles

The following are tetrahedra that may be formed from collisions, where these geometries are more stable as a result of wave centers separated at wavelengths to be at standing wave nodes.  The number in parentheses is the wave center count (K value) for each particle found in the next figure.  The K value 8 for the muon neutrino is a dual 2-level tetrahedron; the value 20 for the tau neutrino is a dual 3-level tetrahedron; the value 28 for the muon electron is a combination of the former two where it is a dual of both a 2-level and 3-level tetrahedron.  Even the electron itself is a tetrahedron at K=10, but not a dual.

after effects of neutrino collisions

Formation of neutrino particles – lepton family. (#) is wave center count.

The particles in the previous figure, and one more that will be shown shortly (tau electron at K=50), are the lepton family of particles that are found in nature, and thus relatively more stable than other particles.  The numbers for these particles – 8, 20, 28, 50 (muon neutrino, tau neutrino, muon electron and tau electron) – are the same magic numbers that are found in stable atomic elements.  This leads to the possibility that these geometries are not only found in subatomic particles, but that it replicates to atomic nuclei that are made from particles.

 

High-Energy Creation of Particles

Particles like the proton and neutron, which exist at the core of atomic nuclei, are known to be composite particles.  When smashed in particle accelerators, three or more quarks are often found.  Yet quarks are never found isolated in nature.  Quarks are only assumed to be elementary particles because their high energies don’t match the energy levels of other particles.

If composite particles are indeed made from other particles, it would likely be from a stable particle.  The electron and positron are likely candidates because of their stability.  Yet it would take significant energy to combine these particles, and it is unlikely that this energy occurs naturally on Earth.  However, imagine a scenario, perhaps early in the universe or within large stars, that collides groups of electrons and positrons:

before electrons and positrons collisions

Collisions of stable particles (electrons and positrons) at high energies.

In certain geometric arrangements, these particles would also be stable.  The same rule applies for wave centers to be at wavelengths for standing wave nodes.  However, these larger particles are not formed from wave centers themselves randomly falling into geometric alignment, but rather from smaller, stable particles that merge to form a composite particle.  The next figure describes the potential geometries for the tau electron, proton and neutron.

after electron collisions

Composite particle creation.  (#) is wave center count. (#) is particle/electron count.

The numbers in parentheses represent the wave center count (black) and the total number of elementary particles (red) to create the composite particle.  Only the tau electron has a wave center count (K=50).  The proton and neutron have wave centers of opposite nodes creating destructive interference.  The primary difference between the tau electron and proton is their center particle (the tau electron has an electron in its center; the proton has a positron in its center).  The only difference between the proton and the neutron is that the neutron has an extra electron in its center for a total of 6 elementary particles.

As a composite particle, with a new formation of standing waves, the electrons that created these particles would cease to be recognized either in charge or energy.  The energy from collisions is stored, causing greater standing wave energy, which is why they appear to be quarks in collider experiments.

 

Particle Decay

Particles that do not have a geometry where wave centers are stable will decay to two or more particles.

 

Natural Decay of Particles

The composite particle description of the proton and neutron from the particle creation section (above) is validated by the beta decay process.  When these particles decay, quarks are never found leaving the particle.  Instead, it is electrons, positrons and neutrinos – the stable particles created by wave centers. In the beta minus decay process, a neutron becomes a proton.

In the beta minus decay process, a neutron becomes a proton.  There is a probability event of a free neutron doing this process, roughly every 15 minutes.  Thus, the event may likely be triggered by something that is frequent on Earth, such as the bombardment of solar neutrinos.  In the next figure, the neutron is illustrated again with 6 elementary particles (five electrons and one positron).  A solar antineutrino collides with the center electron and ejects it, becoming a proton.  The two particles ejected in the decay process are the original antineutrino that started the process in the collision, and the electron that is ejected from the center.  This matches beta minus decay results. Further details on the beta decay process is here.

before and after of beta minus decay

The beta minus decay process where a neutron becomes a proton. (#) is particle/electron count.

In another example, the beta plus decay of a proton turns the particle into a neutron.  A proton has a positron in its center.  Similar to the process described above for the neutron, a solar neutrino may be the trigger for the event.  If the neutrino collides with sufficient energy with the positron in the center of the proton and ejects it, the remaining particle no longer has a positive charge.  It may resemble the tetraquark (described later on this page) and be a neutral particle with four remaining elementary particles.  It may be stable in an atomic nucleus, but would not be stable outside of the nucleus.  The proton becomes a neutron and ejects the original neutrino and a positron.  This matches beta plus decay results.

before and after of beta plus decay

The beta minus decay process where a neutron becomes a proton. (#) is particle/electron count.

A final example from nature is the electron capture process, where a proton captures an electron to become a neutron.  This process is the most straightforward illustration of why the neutron consists of electrons.  It is not a quark that is captured.  It is an electron.  With an extra electron at the center of the proton, it is neutralized with destructive waves.

before and after of electron capture process

The electron capture process where a proton becomes a neutron. (#) is particle/electron count.

 

High-Energy Decay of Particles

This description of the proton and neutron explains results seen in particle collider experiments, which smash particles at extremely high energies. Many particles are found in these collisions (such as proton collisions), and these particles quickly decay. The results from proton collisions are addressed here.  In particle accelerators like CERN, protons are smashed at high energies as illustrated in the next figure.

before proton collisions

Proton collisions in particle accelerator experiments. (#) is particle/electron count.

If a proton consists of five particles, likely four electrons and one positron, it explains the results seen in the next figure. There are numerous particles with varying energies that are found in these collisions, but they can be grouped into one of these five categories:

after proton collisions

Proton collisions creating particles from its components. (#) is particle/electron count.

A single quark (1) is described as one of the particles in the proton (and neutron).  Most of its energy is found in the gluon that is the attractive force between quarks.  Thus, this could simply be an electron particle with energy stored in its standing waves.  A meson (2) composite particle is found with a particle and anti-particle (two particles).  This could be an electron and positron combination that is ejected from proton collisions.  A baryon (3) composite particle is often found with three quarks.  These could be three electrons found as the remaining particle of the proton when one electron and positron annihilate and cannot be detected.  A tetraquark (4) composite particle is rare, but when found could be the structure of the proton without the positron in the center.  And the more recently discovered pentaquark (5) composite particle, is likely the true nature of the particle as four quarks and an anti-quark are found at high enough energies to separate all the true components of the proton.

The three natural examples from beta decay (minus and plus) and the electron capture process logically explain why electrons and positrons are found in the proton and neutron.  It is only particle accelerator experiments that create the perception of quarks, yet quarks are never found by themselves.  Within the structure of a composite particle, when standing waves merge and have greater amplitude and energy, electrons can be misunderstood to be quarks.

 


 

Proof

Proof of the energy wave explanation for particle creation and decay:

  • Calculation of particle energies from the neutrino to the Higgs boson and their linearization function.
  • Logical explanation of neutrino oscillation
  • Logical explanation of electron-positron pair production
  • Logical explanation of beta decay and electron capture process
  • Explanation of the mesons, baryons, tetraquarks and pentaquarks found in particle accelerator experiments (this page).